Symbian ADT Sourcery G++ Lite
ARM SymbianOS
Symbian ADT Sourcery G++ Lite 4.4-172

Symbian Virtual Platform Documentation

((ODESOURCERY

Symbian ADT Sourcery G++ Lite: ARM SymbianOS: Symbi-
an ADT Sourcery G++ Lite 4.4-172: Symbian Virtual Platform

Documentation

CodeSourcery, Inc.
Copyright © 2008 CodeSourcery, Inc.

All rights reserved.

Abstract

This document describes the Symbian Virtual Platform, including how to configure and customize
the virtual environment, and programming details for the base devices.

Table of Contents

P ACE .t iv
1. INteNdEd AUIENCE .. .oeviieeeie e et v
2. OFQANISALION ..ttt ettt v
3. Typographical CONVENTIONScccuuuiiiiiiiiei i Y
1. Configuring the Virtual PIatformooooiiiii e 1
1.1. About Flattened DEVICE TIEESuuuiiiiii ettt 2
1.2. Board Configuration FileSoooiuiiiiiiiiic e 2
1.3. Structure of Board Configuration TreeSccuuuuiiiiiiiiieeii e 2
L EXAMPIE Lo 4
2. GUI CONFIQUIALION ...evt ettt e e 5
2.1. GUI Structure and COMPONENTSuuuieiiiieeiiii et 6
2.2.USING the GUI ... e 6
2.3. GUI XML File SPeCIfiCationuiiiieiiiiiiii e 6
2.4, Sample XIML File ..o 9
3. Base PIAtfOrmM DBVICESuuniiiiiii it 10
3.1. Common Device CharaCteriStiCsc.uuuieiiiiiieiiiii e 11
3.2, PIAtfOrM DBVICE ..ot 11
3.3, INterrupt CoNtrolIErii e 11
BuA. SEIIAI POIT .ot 12
3.5, Keyboard Controllerieiiiiiiiii e 13
3.8, INTErVAl TIMEE ... 14
3.7 REAI-TIME CIOCK .. 15
3.8. POINTEr CONTIOIIET ...t 16
3.9, FramebUTTEr ...t 17
3.10. HOSt FileSYStemM DEVICEieveieiieiiiii et 20
3.11. SNAPSNOL DBVICE ...t 24
3.12. NEWOIK DBVICE ...ttt 25
3.13. NAND FIaSh DBVICEceeiiiieiiiii et 26
314 AUIO DBVICE ...t 28
Y T TP 32
4.1 INErodUCING VITTIO L.vueciii et 33
A.2. VITTHO_TING et 33
4.3. Virtual Platform BiNAINGSc.uuuiiiiiiiiiiii e 34
5. DBVICE PIUGINS ...ttt e et 35
5.1, INEFOTUCTION ...ttt 36
5.2, DEVICE CIASSESvtieiiii ettt 36
5.3. Device OBJeCt MEtNOUSceiiiiiiiiii e 37
5.4, SNAPSNOTS ...t 37
D D TIMIBES o e 37
5.8, KEYDOAIT ... 38
ST IMIOUSE ...t 38
5.8. Interfacing With C COUEoiiiiiiiiiiii e 39

Preface

This preface introduces the Symbian Virtual Platform Documentation. It explains the structure
of this guide and lists other sources of information that relate to Symbian ADT Sourcery

G++ Lite

Preface

1. Intended Audience

This document is written for developers targeting the Symbian Virtual Platform. It describes how to
customize the configuration of the base virtual platform, and the operation of the devices within that
system. It also describes how to extend the virtual platform by adding emulation of additional devices.

It is assumed that you are already familiar with the process of bringing up a SymbianOS base port.
The tasks required to build a SymbianOS image for the Virtual Platform are not covered.

2. Organisation

This document is organised into the following chapters and appendices:

Chapter 1, “Configuring the Virtual ~ This chapter describes how to configure the Symbian Virtual
Platform” Platform.

Chapter 2, “GUI Configuration” This chapter describes how to configure and bind devices to
the GUI.

Chapter 3, “Base Platform Devices” This chapter describes the operation of the virtual devices that
make up the base virtual platform.

Chapter 4, “Virtio” This chapter describes the Virtio framework used by some of
the virtual 10 devices.

Chapter 5, “Device Plugins” This chapter describes how to extend the virtual platform by
adding emulation of new devices.

3. Typographical Conventions

The following typographical conventions are used in this guide:

> conmand arg ... A command, typed by the user, and its output. The “>” character is the
command prompt.

conmand The name of a program, when used in a sentence, rather than in literal
input or output.

literal Text provided to or received from a computer program.

pl acehol der Text that should be replaced with an appropriate value when typing a
command.

\ At the end of a line in command or program examples, indicates that a
long line of literal input or output continues onto the next line in the
document.

Chapter 1
Configuring the Virtual Platform

Ths Symbian Virtual Platform is a flexible system model that can be reconfigured to provide
different devices, memory layouts, etc. This chapter describes the configuration files used

to achieve this.

Configuring the Virtual Platform

1.1. About Flattened Device Trees

A Symbian Virtual Platform board configuration is described using Flattened Device Trees. These
are based on the device trees used by OpenFirmware (IEEE 1275-1994) systems. Flattened Device
Trees were originally designed as a means of communication between a bootloader and a PowerPC
Linux kernel. However despite this they are not PowerPC- or Linux-specific, and hove been adopted
as a means of describing a Symbian Virtual Platform board configuration.

Flattened Device Trees can be represented in two different forms. The source form is an ASCII text
representation suitable for editing by humans. The binary form is a compact machine-readable rep-
resentation used by the Virtual Platform. The Device Tree Compiler utility is provided to convert
between these two forms.

A Flattened Device Tree consists of a set of nodes. Each node represents a device or bus, and has a
set of properties. Typically these properties describe what type of device this node represents, where
interrupts are routed, where memory mapped control registers should be placed, and any other device-
specific properties.

Each node has a unique name. This name consists of two parts separated by an @symbol. The first
part is the base name, which is typically the same for different instances of similar devices. The
second part is the device address, which is used to distinguish multiple instances of similar devices.
The node name has no effect on the operation of the device; it is just used to locate the device within
the tree.

Each property consists of a nane=val ue pair. The value may be either empty, a null-terminated
ASCII string, raw byte data, or a set of 32-bit cells (values). Cells are generally used to hold addresses,

sizes, references to other devices, or general numeric values. A cell value can be specified as either
a reference to a device node, or a hexadecimal number.

1.2. Board Configuration Files

QEMU uses a board configuration file to create the virtual machine. This configuration file should
be a binary Flattened Device Tree describing the virtual machine.

1.2.1. Invoking QEMU

Board configuration files can be specified with the - Mcommand-line option. For example:

> arm none- synbi anel f - germu- system - M board. dt b

1.2.2. Compiling Device Trees

The Device Tree Compiler is a utility that converts human-readable Flattened Device Tree source
files into machine-readable binary representation. The following command converts a source file

(boar d. dt s) to a binary file (boar d. dt b).

> arm none-synbi anel f-dtc board.dts -O dtb -o board.dtb

1.3. Structure of Board Configuration Trees

A typical board contains three sets of device nodes: CPU, Memory and Peripherals.

Configuring the Virtual Platform

1.3.1. CPU Device Nodes

The CPU device node should be located in the / cpus branch of the device tree. The / cpus node
should have #addr ess- cel | s=1 and #si ze- cel | s=0. The name of the node is used to de-
termine the type of the CPU. Valid properties are:

devi ce-type Mustbesetto" cpu".
cpl5, ctr (optional) The value of the CP15 Cache Type Register.
cpl5,clid (optional) The value of the CP15 Cache Level ID Register.

cpl5, ccsi AN (optional) The value of the CP15 Cache Size ID Register for data/unified cache
level N.

cpl5, ccsi dNi (optional) The value of the CP15 Cache Size ID Register for instruction cache
level N.

1.3.2. Memory Device Nodes

Memory device nodes describe areas of RAM. They should be located in the root of the device tree.
The root of the device tree should have #addr ess- cel | s=1 and #si ze- cel | s=1. Multiple
memory regions may be added as separate nodes or combined into a single node. Valid properties
are:

devi ce-type Musthesetto" menory”.

reg Each pair of cells specifies an {address, length} of a memory region.
1.3.3. Peripheral Device Nodes

This includes all other devices in the system, including interrupt controllers. They should be located
in a branch of the device tree with #addr ess- cel | s=1 and #si ze- cel | s=0.

Devices are typically identified by the conpat i bl e property, and have a set of memory-mapped
registers located by the r eg property. For individual device details see Chapter 3, “Base Platform
Devices”.

1.3.4. Interrupts

Interrupt routing is determined by the interrupt, interrupt-parent and
genu, i nt err upt s properties.

In most cases interrupt routing is specified using a subset of the OpenFirmware interrupt trees. The
i nt errupt - par ent property specifies the parent interrupt device, and the i nt er r upt s property
specifies how device interrupts map onto parent interrupts.

The current implementation requires that interrupt parents have #i nt err upt - cel | s=1. The
i nt errupt - nap property is not implemented.

In some cases (typically routing from the top-level interrupt controller to the CPU), an OpenFirmware
interrupt tree does not include this link. The gemu, i nt er r upt s property is used to describe this
to QEMU. This property consists of a pair of cells for each device interrupts. Each pair is a parent
device reference and interrupt number.

Configuring the Virtual Platform

1.4. Example

Below is an example of a simple board description file. It constitutes a Cortex-A8 cpu, ram, interrupt
controller and a serial port.

I {
#address-cell s = <1>;
#si ze-cells = <15;

cpus {
#address-cel |l s = <1>;
#si ze-cel I s = <0>;
cpuO: ARM Cortex- AB@ ({
devi ce_type = "cpu";
reg = <0>;
1
1
memory@ {
devi ce_type = "nenory";
/[* 128Mo ram at address zero. */
reg = <0 08000000>;
1
syborg {
#address-cel |l s = <1>;
#si ze-cel I s = <0>;
/[* Interrupt controller at address 0xc0000000. */
intc: intc@ ({
conpati ble = "syborg,interrupt"”;
#interrupt-cells = <1>;
reg = <c0000000>;
interrupt-controller;
gemu, i nterrupts = <&pul0 0>
numinterrupts = <20>
1
/* Serial port at address 0xc0006000. */
serial @ ({
device_type = "serial"
conpati ble = "syborg, serial"
chardev = "serial 0";
reg = <c0006000>;
interrupts = <5>
interrupt-parent = <& ntc>

Chapter 2
GUI Configuration

The Symbian Virtual Platform includes a configurable GUI. The GUI provides means to set
skins and combine graphic displays, text displays, pointer devices, and graphic widgets in
virtual terminals, without needing to recompile the system. This chapter documents the
structure of the GUI and its configuration.

GUI Configuration

2.1. GUI Structure and Components

The GUI configuration is specified in an XML file. The structure of the XML file is the following:
* buttons

« display areas

* pointer areas

The GUI is specified as a collection of Virtual Terminals.

Both frame buffer and pointer devices are referenced by their FDT device name, which is specified
in the devi d attribute.

2.2. Using the GUI

The GUI is enabled with the - gui command-line option of QEMU, followed by the XML file name.
For example:

./ ar m none- synbi anel f - genu- system -kernel ./a.out -M syborg.dtb \
-gui syborg. xm

When the GUI loads, relative image pathnames in the XML file are looked up relative to the directory
in which QEMU is launched, unless they include a path in the file name (either the backgr ound
element or the pr essedi ng element for Virtual Terminals and buttons respectively).

Currently, only the PNG image file format is accepted.

During the GUI operation, the following key combinations are available:
» Ctrl+Alt+1..9: switches between VTs

 Ctrl+Alt+F: toggles fullscreen

 Ctrl+Alt: exits grabbing mode when active

2.3. GUI XML File Specification

The top-level element in the GUI XML file is a <gui > element.

2.3.1.Virtual Terminals

Virtual Terminals are backgrounds onto which buttons, display areas and frame buffers can be placed.
The virtual terminals are specified by the <vt > .. </ vt > block.

Inside the vt element, buttons, display areas and pointer areas are specified by <butt on>,
<di spl ayar ea>, and <poi nt er ar ea> elements respectively. The display and pointer areas
can overlap.

Table2.1. vt Element Attributes

Attribute |Description Mandatory

background |File name of the background image. yes

GUI Configuration

Attribute |Description Mandatory

width Width of the background. Image cropped if a smaller number than the
actual image width is specified.

height Height of the background. Image cropped if a smaller number than the
actual image height is specified.

2.3.2. Buttons

Buttons are rectangular regions of the background that can be clicked with a mouse of the host system.

Each button has an associated action which is triggered both when the button is left-button clicked
and when it is released. Currently, the only action available is " sendkey" , which sends a scan
code to the registered keyboard device when the button is pressed, and sends the scan code with the
proper bits set when released.

Each button is specified by the <butt on .. /> empty element (this means that there is no </
but t on> closing tag).

Buttons can be associated with an image, which is displayed when the button is pressed. This image
is located in the same region where the button can be clicked, or in a different location through the
pressed x,pressed_y,pressed_w dt h,pressed_hei ght attributes (where pr essed_
wi dt h and pr essed_hei ght default to the pressed image width and size respectively).

The button element has the following attributes:

Table2.2. but t on Element Attributes

Attribute Description Mandatory
X Left coordinate of the clickable area. yes

y Top coordinate of the clickable area. yes

width Width of the clickable area.

height Height of the clickable area.

pressedimg File name of the image to display when the button is pressed.

action Action to perform when the button is pressed. Only " sendkey" is|yes
currently supported.

parameter Parameter for the specified action. Only an integer value representing |yes
the key scancode is supported. All parameters shall be enclosed in " "
double quotes.

pressed_x Left coordinate of the pressed button image. Defaults to the left co-
ordinate of the clickable area.

pressed_y Top coordinate of the pressed button image. Defaults to the top co-
ordinate of the clickable area.

pressed_width |Width of the pressed button image. Defaults to the pressed image
width.

pressed_height Height of the pressed button image. Defaults to the pressed image
height.

GUI Configuration

2.3.3. Display Areas

A display area is the region of the VT where a frame buffer device is rendered. There can exist many
display areas in the same VT.

Each display area is specified by a <di spl ayarea .. />empty element (this means that there
isno </ di spl ayar ea> closing tag).

Display areas belonging to a skinned VT cannot be resized or rotated (just flipped vertically or hori-
zontally).

Each display area is associated with a device instance of the FDT through the device name (devi d
attribute).

A display area element has the following attributes:

Table2.3. di spl ayar ea Element Attributes

Attribute|Description Mandatory
X Left coordinate of the display area. yes
y Top coordinate of the display area. yes

width Width of the display area.
height Height of the display area.

devid FDT name of the frame buffer device instance. |yes

2.3.4. Pointer Areas

A pointer area is the region of the VT that forwards its pointer events to a pointer device. A pointer
area may grab mouse events. There can exist many pointer areas in the same VT.

Each pointer areas is specified by a<poi nt erarea .. />empty element (this means that there
is no </ poi nt er ar ea> closing tag).

Each pointer area is associated with a pointer device instance of the FDT through the device name
(devi d attribute).

A pointer area element has the following attributes:

Table 2.4. poi nt er ar ea Element Attributes

Attribute |Description Mandatory
X Left coordinate of the pointer area. yes
y Top coordinate of the pointer area. yes
width Width of the pointer area.
height Height of the pointer area.
devid FDT name of the pointer device instance. yes
grabonclick |Specifies whether the GUI starts grabbing all mouse events when the first
left-button click event occurs, or each event is forwarded to the pointer
device without grabbing. 0 = No, 1 = Yes.

GUI Configuration

2.4. Sample XML File

The following example demonstrates a configuration for a GUI having two virtual terminals, the
first with a button, a display area, and a a pointer area, and the second with just a display area.

<gui >
<vt background="syborg. png" w dt h="600" hei ght="480">
<button x="20" y="206" w dth="26" hei ght="14" acti on="sendkey"
par amet er =" 1" pressedi ng="pressed_butt on. png
pressedi ng_x="21" pressedi ng_y="207"/>
<di spl ayarea devi d="framebuf fer @" x="22" y="40"
wi dt h="100" hei ght ="105"/>
<poi nt erarea devi d="t ouchscreen@" x="22" y="40"
wi dt h="100" hei ght ="105" grabonclick="0"/>
</vt>
<vt background="syborg_back. png" w dt h="600"
<di spl ayarea devi d="0" x="20" y="20" w dt h="70"
</vt>
</ gui >

hei ght =" 480" >
hei ght =" 70"/ >

Chapter 3
Base Platform Devices

The Symbian Virtual Platform includes a base set of virtual devices. These devices are
designed to provide essential functionality, while remaining simple to program, and avoiding
many of the problems encountered when using real devices. This chapter documents the
functionality and programming interfaces for these devices.

10

Base Platform Devices

3.1. Common Device Characteristics

Unless otherwise specified, each device responds to a single 4-Kbyte region of address space, which
consists of several control registers. Each register is 4 bytes wide, and should be accessed with an
aligned 32-bit access. Registers may be read-only, write-only or read-write. All other accesses to
these device regions must be avoided.

The r eg property consists of a single cell that specifies the base address of this region. The address
must be on a 4-Kbyte boundary.

The compatible attribute is used to identify the type of device. The name of the device is ignored,
though it should be unique.

3.2. Platform Device

3.2.1. Description

This device provides platform configuration data. It allows dynamic enumeration and configuration
of other devices.

Configuration data is presented as a binary Flattened Device Tree (FDT) data structure.
This device occupies a 16-Mbyte window of address space. The first 4 Kbytes of this address space

are control registers, as with other devices. The remainder of this region may be accessed as normal
RAM.

3.2.2. Device Properties
conpati ble syborg, platform

3.2.3. Registers

Table 3.1. Platform Device Registers

Offset | Access|Reset Name Description

0x000 (R 0xc51d1000|ID Peripheral ID.

0x004 |R impl def TREE_START | The address of the FDT header. This is an offset from
the platform device base address.

3.3. Interrupt Controller

3.3.1. Description

This device is a simple interrupt controller. It has multiple input IRQs and a single output IRQ. Each
input IRQ can be enabled and disabled independently. In addition all inputs can be disabled in a
single operation.

All inputs are level-triggered. An input is active if it is enabled and raised.

The output IRQ is asserted iff there are any active IRQs.

11

Base Platform Devices

3.3.2. Device Properties
conpati bl e syborg, i nterrupt

numinterrupts Number of interrupt sources (optional, default 64).

3.3.3. Registers

Table 3.2. Interrupt Controller Registers

Offset | Access|Reset Name Description
0x000 |R 0xc51d0000 ID Peripheral ID.
0x004 |R 0x00000000 |STATUS Number of active interrupts.

0x008 |R OxFfFffff CURRENT Current active interrupt. Lower numbers are higher
priority. OXffffffff if no interrupts are active.

0x00c |W N/A DISABLE_ALL |Writing any value disables all inputs.

0x010 |W N/A DISABLE Disable a single interrupt.

0x014 |W N/A ENABLE Enable a single interrupt.

0x018 (R impl def TOTAL The total number of inputs (active or inactive).

3.4. Serial Port

3.4.1. Description

This device implements a DMA-capable serial port. Bytes written to the DATA register are sent
immediately. Received bytes are stored in a FIFO. A maskable interrupt is raised when the data FIFO
is not empty.

DMA operates independently for transmit and receive, with a simple address/count pair for each. A
DMA transfer is initiated by writing the address register, then the count register. The transfer starts
automatically when a nonzero value is written to the count register. As the transfer progresses the
address register is incremented and the count register decremented. The transfer stops when the count
reaches zero. A maskable interrupt is raised when the count register is zero.

A receive DMA transfer first reads any bytes present in the FIFO, then additional incoming bytes.

The count register may be read at any time to monitor progress. To stop a transfer early, write zero
to the count register, then read the address register to determine how many bytes were transferred.

Note

The current implementation completes DMA transmits immediately. However future imple-
mentations may transfer asynchronously. Drivers should check whether the previous
transmit has completed before starting another one.

3.4.2. Device Properties
conpati bl e syborg, seri al
char dev Name of associated character device (e.g. " seri al 0").

fifo-size Sizein bytes of the receive FIFO (optional, default 16).

12

Base Platform Devices

3.4.3. Registers

Table 3.3. Serial Controller Registers

Offset | Access|Reset Name Description
0x000 |R 0xc51d1001 {ID Peripheral ID.
0x004 |RW |Oxffffffff DATA Write sends a byte of data. The high 24 bits

should be zero.

Read removes the next byte from the FIFO and
zero extends. If the FIFO is empty then Oxffffffff
is read.

0x008 |R 0x00000000 |[FIFO_COUNT The number of bytes currently in the FIFO.

0x00c |[RW [0x00000000|INT_ENABLE Bit flags to determine which interrupts are en-
abled. A zero bit masks the interrupt. A nonzero
bit enables the interrupt.

BitO FIFO not empty.
Bitl TX DMA count zero.

Bit2 RX DMA count zero.

0x010 |[RW |0x00000000 DMA_TX_ADDR |Transmit DMA address.
0x014 |[RW |0x00000000 DMA_TX_COUNT | Transmit DMA counter.
0x018 |[RW |0x00000000 DMA_RX_ADDR |Receive DMA address.
0x01lc |[RW [0x00000000 DMA_RX_COUNT |Receive DMA counter.
0x020 |R impl def FIFO_SIZE The size of the FIFO.

3.5. Keyboard Controller

3.5.1. Description

This device receives keyboard button press/release events. One event is generated for each press or
release action. The low 8 bits of the value is the PC scan code identifying the key. The most significant
bit (bit 31) is zero for key-down events, and set for key-up events.

A maskable interrupt is raised when the event FIFO is not empty.
3.5.2. Device Properties
conpati bl e syborg, keyboard

fifo-size The maximum number of events the FIFO can hold (optional, default 16).

13

Base Platform Devices

3.5.3. Registers

Table 3.4. Keyboard Controller Registers

Offset | Access|Reset Name Description

0x000 |R 0xc51d1002 [ID Peripheral ID.

0x004 (R OxFfffffff DATA Reads and removes the next event from the FIFO, or
Oxffffffff if the FIFO is empty.

0x008 |R 0x00000000 |FIFO_COUNT |The number of events currently in the FIFO.

0x00c [RW |0x00000000|INT_ENABLE |0 Interrupt masked.
1 Interrupt enabled.

0x010 |R impl def FIFO_SIZE |The size of the FIFO.

3.6. Interval Timer

3.6.1. Description

This device is a single countdown timer. When the timer reaches zero, an interrupt is raised. This
interrupt is sticky (remains set until manually cleared), and can be masked.

In periodic mode the counter is then reloaded with the LIMIT value, and continues counting.

In one-shot mode the timer stops, and the count value must be reset before the timer is re-enabled.

3.6.2. Device Properties

conpati bl e syborg,timner

frequency

Counter frequency in Hz.

3.6.3. Registers

Table 3.5. Interval Timer Registers

Offset | Access|Reset Name Description
0x000 |R 0xc51d1003 {ID Peripheral ID.
0x004 |RW [0x00000000|RUNNING 0 Timer stopped.

1 Timer running.
0x008 [RW |0x00000000|ONESHOT 0 Periodic. Timer count is reloaded from LIMIT

when it reaches zero.

1 One-shot. Timer stops when it reaches zero.
0x00c [RW {0x00000000|LIMIT Set the reload value. Also sets the current timer value.
0x010 [RW |0x00000000|VALUE Current timer countdown value.
0x014 |RW [0x00000000|INT_ENABLE|O Interrupt masked.

14

Base Platform Devices

Offset | Access|Reset Name Description
1 Interrupt enabled.

0x018 |RW |0x00000000|INT_STATUS |Write 0x00000001 to this register to clear the inter-
rupt. Read gives the interrupt state before masking (0
= clear, 1 = set).

0x01c |R impl def FREQ Timer frequency in Hz.

3.7. Real-Time Clock

3.7.1. Description
This device is a free-running reference clock.

The clock counts the number of hanoseconds (10'95) since the UNIX Epoch (00:00:00 UTC, January
1, 1970).

For convenience the counter can also be read in seconds, microseconds, and milliseconds.

Because the counter value is 64-bit, accesses are explicitly latched. Issuing a read latch command
(0-3) copies the current counter value to the data register. A write latch command (4) sets the counter
to the value in the data register.

3.7.2. Device Properties

conpati ble syborg,rtc

3.7.3. Registers

Table 3.6. Real-Time Clock Registers

Offset | Access|Reset Name Description
0x000 |R 0xc51d1004 [ID Peripheral ID.
0x004 (W N/A LATCH Timer latch control.
0 Read counter (nanoseconds).
1 Read counter (microseconds).
2 Read counter (milliseconds).
3 Read counter (seconds).
4 Write counter.
0x008 |[RW |0x00000000 |DATA_LOW |The low (least significant) 32 bits of the data register.
0x00c |[RW |0x00000000 |DATA_HIGH |The high (most significant) 32 bits of the data register.

15

Base Platform Devices

3.8. Pointer Controller

3.8.1. Description

This device receives events from a pointing device (mouse or touchscreen). Each event includes
several button states, a Z distance (typically a scroll wheel) and XY coordinates. For mice the XY
coordinates are a relative distance, while for a touchscreen they are absolute coordinates. Pending
events are stored in a FIFO.

A maskable interrupt is raised when the event FIFO is not empty.
3.8.2. Device Properties

conpati bl e syborg, pointer

absol ute 0 = mouse, 1 = touchscreen. (optional, default 1).

fifo-size The maximum number of events the FIFO can hold (optional, default 16).

3.8.3. Registers

Table 3.7. Pointer Controller Registers

Offset | Access|Reset Name Description

0x000 |R impl def ID Peripheral ID. 0xc51d0005 for mouse, 0xc51d0006
for touchscreen.

0x004 (W N/A LATCH Write 1 to this register to load the next FIFO entry.

Has no effect if the FIFO is empty.
0x008 |R 0x00000000 |FIFO_COUNT | The number of events currently in the FIFO.

0x00c |R 0x00000000 | X Current X coordinate. For mice this is a signed delta
from the previous position. For touchscreens it is an
absolute value between 0 and 0x7fff. The positive X
axis is to the right.

0x010 |R 0x00000000|Y Current Y coordinate. For mice this is a signed delta
from the previous position. For touchscreens it is an
absolute value between 0 and 0x7fff. The positive Y
axis is downwards.

0x014 |R 0x00000000(Z Current Z coordinate. This is a signed delta from the
previous value. The positive Z axis is downwards.

0x018 (R 0x00000000 | BUTTONS Each bit indicates the state of a button. Buttons are
numbered from the least significant bit. A nonzero
bit indicates that the button is pressed.

0x01c |R 0x00000000 |INT_ENABLE|O Interrupt masked.

1 Interrupt enabled.

0x020 |R impl def FIFO_SIZE |The size of the FIFO.

16

Base Platform Devices

3.9. Framebuffer

3.9.1. Description

This device is a framebuffer that has the following capabilities:
« Different bpp depths (1, 2, 4, 8, 15, 16, 24, 32)

 Color palette for bpp depths 1, 2, 4, 8

» LE/BE byte ordering

» LE/BE pixel ordering

» RGB/BGR color ordering (for 16 and 32 bpp modes)

* Resizeable screen

* Fast blank screen mode

* Interrupt raising

 Variable orientation: 90-degree stepped rotation, plus flipping

« Non-consecutive row arrangement

3.9.2. Configuring the Framebuffer device

Configuration can be performed with the device in disabled state (FB_ENABLED = 0) to avoid un-
expected behavior from a half-configured device.

Sample configuration sequence:

1. Disable the device (FB_ENABLED =0)

2. Specify the base address memory where the data will be read (FB_BASE = addr)
3. Specify the interrupts mask (FB_INT_MASK)

4. Specify the rest of the configuration settings (i.e. height, width, orientation, palette)
5. Enable the device (FB_ENABLED = 1)

FB_BASE update (for page flipping) and palette changes can safely be performed without disabling
the device.

3.9.3. Pixel Formats

The framebuffer interprets framebuffer data by loading 32-bit words of data from RAM, splitting
each word into pixels, then interpreting each pixel as either an index into the palette or a set of 3
color components. The exception is 24-bit mode where each pixel is fetched as 3 bytes. See individual
registers for full details.

3.9.4. Device Properties

conpati bl e syborg, franebuffer

17

Base Platform Devices

wi dt h

hei ght

Default width in pixels (optional)

Default height in pixels (optional)

3.9.5. Registers

Table 3.8. Framebuffer Registers

Offset

A cC -
cess

Reset

Name

Description

0x000

R

0xc51d1007

1D

Peripheral ID.

0x004

RW

0x00000000

BASE

Base memory address where the data will be read.
The address must be aligned to a 4-byte boundary.

0x008

RW

impl def

HEIGHT

Screen height (in pixels).

0x00c

RW

impl def

WIDTH

Screen width (in pixels). The length of the resulting
row data must be a multiple of 4 bytes. e.g. for 16
bpp mode this must be a multiple of 2.

0x010

RW

0x00000000

ORIENTA-
TION

Set display orientation.

0 No rotation.

1 90 degree counterclockwise rotation.
2 180 degree rotation.

3 90 degree clockwise rotation.

4 \fertical flip.

5 90 degree counterclockwise rotation followed by
vertical flip.

6 Horizontal flip.

7 90 degree clockwise rotation followed by vertical
flip.

Note

This has no direct affect on the operation of
the framebuffer. It is simply a hint how the
resulting image should be displayed.

0x014

RW

0x00000000

BLANK

Blank screen mode. Causes the device to display a
black screen, ignoring the contents of the framebuffer
data. The device does not trigger the VSYNC inter-
rupt during the Blank screen mode.

0 Normal operation.

1 Blank screen.

18

Base Platform Devices

Offset

A cC -
cess

Reset

Name

Description

0x018

RW

0x00000000

INT_MASK

Integer bit mask controlling which interrupts are
active. It is an OR'ed combination of the following
bits:

0x01 Enablesthe VSYNC interrupt. This interrupt
triggers immediately after a screen refresh.

0x02 Enables the BASE_UPDATE_DONE inter-
rupt. Raised at the same time as VSYNC,
but only if the FB_BASE register has been

modified since the last refresh.
Note

Screen refreshes may occur at unpredictable
intervals, so the VSYNC interrupt should
not be used to control timing.

0x01c

RW

0x00000000

INT_CAUSE

This register is an integer bit mask, where each bit
represents the asserted interrupt. Read and write this
register in the interrupt handling routine. Each bit set
will clear the corresponding interrupt.

Refer to the FB_INT_MASK register for the possible
bit values and the description of each interrupt.

0x020

RW

0x00000020

BPP

Bits per pixel. Valid values are as follows:
1 2-color palette.

2 4-color palette.

4 16-color palette.

8 256-color palette.

15 High bitignored. 5 bits each for red, green and

blue.

16 5 bits red, 6 bits green, 5 bits blue.

24 8 bits each for red, green and blue.

32 8 high bits ignored. 8 bits each for red, green

and blue.

0x024

RW

0x00000000

COLOR_OR-
DER

Order of the red, green, and blue components.
0 BGR (blue is LSB, red is MSB).

1 RGB (redis LSB, blue is MSB)

0x028

RW

0x00000000

BYTE_OR-
DER

Endianness of the framebuffer source data. Data is
fetched in 32-bit words, and the whole word is byte

19

Base Platform Devices

Offset

A cC -
cess

Reset

Name

Description

swapped according to this register, independent of
the pixel size. This is ignored for 24 bpp mode.

0 Little-endian

1 Big-endian

0x02c

RW

0x00000000

PIXEL_OR-
DER

Controls how multiple pixels are packed into a byte.
This only affects 1, 2 and 4 bpp modes. The least
significant byte of the word always contains the first
8/4/2 pixels.

0 Little-endian (first pixel is LSB).

1 Big-endian (first pixel is MSB).

0x030

RW

0x00000000

ROW_PITCH

Number of bytes between the start of consecutive
rows. If set to zero then this register is ignored and
the pitch is the length of the row. Must be a multiple
of 4.

0x034

RW

0x00000000

ENABLED

Enables or disables the framebuffer device, allowing
configuration changes during the disabled mode to
avoid unexpected behavior from a half configured
device.

0 Device is disabled.

1 Device is enabled.

0x400-
0x7fc

RW

0x00000000

PALETTE

Palette values to use in 1, 2, 4, and 8 bpp modes.
There is one 32-bit word per entry. The color encod-
ing is:

Bits 31-24 Unused.
Bits 23-16 Red.
Bits 15-8 Green.
Bits 7-0 Blue.

3.10. Host Filesystem Device

3.10.1. Description

This device provides access to the host filesystem.

Access is implemented via a virtual syscall interface. Syscall arguments are loaded into the corres-
ponding device argument registers. The Syscall is triggered by writing the syscall number to the
COVMAND register. The syscall completes and the results are ready immediately. The RESULT register

20

Base Platform Devices

is zero if the syscall succeeded and a negative error value if the syscall failed. Other values may be
returned in the device argument registers.

Filenames are specified using a pair of argument values. The first value is a memory address locating
the start of the string, and the second is a length. Filenames are encoded using 16-bit Unicode char-
acters (a.k.a. UTF-16 or UCS-2). The filename length is the number of 16-bit characters. The filename
need not be null terminated.

All filenames should include absolute paths including the drive specifier. (e.g. N: \ TESTS\
LOG. TXT). The device has no concept of a current working directory, and relative paths are not
supported. A backslash (\) is used as a directory separator.

The supplied filename is mapped onto the host system by removing the drive specifier and prepending
a host directory.

Warning

This device does not provide a secure sandbox environment. It may be possible to access
files outside the specified host directory.

Warning

Care should be taken to avoid modifying a file or directory on the host while it is in use by
the virtual machine. No facilities are provided for synchronisation or locking between dif-
ferent machines.

3.10.2. Syscalls

The following syscalls are available:

MkDir (1) Create a new directory. ARG/ ARGL is the name of the new direct-
ory.

RmDir (2) Remove a directory. ARGD/ ARGL is the name of the directory to
be removed. The directory must be empty.

Delete (3) Remove a file. ARQD/ ARGL is the name of the file to be removed.

Rename (4) Rename a file. ARGD/ ARGL is the name of an existing file, and
ARG2/ ARG is the new name for the file.

Replace (5) Move a file, replacing another if necessary. ARG/ ARGL is the
name of an existing file, and ARG2/ ARG3 is the new name for the
file.

Get Entry (7) Query attributes of a file. ARG/ ARGL is the name of the file to

query. Upon successful completion the following values are set:

ARGD |File attributes. A combination of the following bit flags:
0x01 Readonly

0x02 Hidden

0x10 Directory

21

Base Platform Devices

Open File (9)

Open Directory (10)

Close File (11)

Read From File (12)

Write To File (13)

Set File Size (14)

Flush (15)

Close Directory (16)

Read Directory (17)

ARGL |File last modification time. This is the number of seconds
from the UNIX Epoch (00:00:00 UTC, January 1, 1970).

ARG2 |File size in bytes.

Open a file. ARG/ ARGL is the name of the file to open. Upon
successful completion the following values are set:

ARQ) |The newly opened file handle.

ARGL [File attributes. A combination of the following bit flags:
0x01 Readonly
0x02 Hidden

0x10 Directory

ARG2 |File last modification time. This is the number of seconds
from the UNIX Epoch (00:00:00 UTC, January 1, 1970).

ARG3 |File size in bytes.

Open a directory listing. ARGD/ ARGL is the filename pattern to
match. The last filenename component may include * and ? wild-
cards. If the pattern ends in \ then it is equivalent to \ *. ARQD is
set to the newly opened directory handle.

Close a file handle. ARQD is the file handle to close.

Read data from a file. ARQO is the file handle to read from. ARGL
is the offset from the start of the file. ARG is the memory address
to write the read data to. ARG3 is the number of bytes to read. Upon
successful completion ARQO is set to the number of bytes read. This
may be less than the requested size if the end of the file is reached.

Write data to a file. ARQO is the file handle to write to. ARGL is the
offset form the start of the file. ARG2 is the memory address to read
the read data from. ARG3 is the number of bytes to write. Upon
successful completion ARGD is set to the number of bytes written.

Truncate a file. ARQD is the file handle to be truncated. ARGL is the
new length of the file, in bytes.

Flush any buffered file data to underlying storage. ARQ is the file
handle to flush.

Close a directory handle. ARQD is the directory handle.

Read a directory entry. To obtain a complete list of files this this
should be called repeatedly until an EOF error is encountered. ARGD
is the directory handle to read from. ARGL is the memory address
of the buffer to receive the name. ARG is the size (in 16-bit charac-
ters) of the buffer pointed to by ARGL. Upon successful completion
the name of the directory entry is written into the buffer, and the
following values are set:

22

Base Platform Devices

ARGD |File attributes. A combination of the following bit flags:
0x01 Readonly
0x02 Hidden

0x10 Directory

ARGL |File last modification time. This is the number of seconds
from the UNIX Epoch (00:00:00 UTC, January 1, 1970).

ARG [File size in bytes.

ARG3 |[The length of the name (in 16-bit characters).

3.10.3. Errors

The following result codes may be returned:

Error Value
None (Success) |0
NotFound -1
General -2
NoMemory -4

NotSupported -5

InvalidArgument |-6
BadHandle -8
AlreadyExists -11
PathNotFound -12

InUse -14
Unknown -19
Corrupt -20
AccessDenied -21
Locked -22
Write -23
Eof -25
DiskFull -26
BadName -28
Abort -39
TooBig -40
DirFull -43

PermissionDenied |-46

3.10.4. Device Properties

conpati bl e syborg, hostfs

23

Base Platform Devices

host - path The host path that specifies the root directory for this device.

drive-nunber The number to identify this device. Typically drive number 1 is A:, drive
number 2 is B: , etc.

3.10.5. Registers

Table 3.9. Host Filesystem Device Registers

Offset | Access|Reset Name Description
0x000 |R 0xc51d0008 |ID Peripheral ID.

0x004 |RW {0x00000000 COMMAND [Writing a value to this address causes the specified
command to be executed.

0x008 |[RW |0x00000000 |[RESULT The result of the last command. A value of zero indic-
ates success, a negative error code indicates failure.

0x00c |[RW {0x00000000|ARGO The first argument register.
0x010 |RW |[0x00000000ARG1 The second argument register.
0x014 |RW [0x00000000|ARG2 The third argument register.
0x018 |RW [0x00000000 | ARG3 The fourth argument register.

3.11. Snapshot Device

3.11.1. Description

This device allows snapshots of the virtual machine to be created and restored. The name of the
snapshot is an ASCII string read from RAM. The name need not be null terminated.

Note

The snapshot might not take effect immediately. It can occur any time between the TRI GGER
store and the next branch instruction.

Normally QEMU stores machine snapshots in a QCOW?2 image file, along with a snapshot of the
image. If the snapshot name starts with f i | e: then the rest of the name is interpreted as a filename,
and the snapshot is read from/written to that file.

Snapshots can also be loaded with the - | oadvm nane commandline option or the | oadvmmon-
itor command.

Warning

The host filesystem device allows a machine to interact with files not under the control of
QEMU. The state of these files is not included in the snapshot, and any open handles will
be closed when the snapshot is restored.

3.11.2. Device Properties

conpati bl e syborg, snapshot

24

Base Platform Devices

3.11.3. Registers

Table 3.10. Snapshot Device Registers

Offset | Access|Reset Name Description

0x000 |R 0xc51d0009 (ID Peripheral ID.

0x004 |RW [0x00000000 | ADDRESS | The memory address of the snapshot name.
0x008 |RW [0x00000000| ADDRESS | The length (in bytes) of the snapshot name.
0x00c |W N/A TRIGGER |Write 1 to this register to create a snapshot.

Write 2 to this register to restore from a snapshot.

3.12. Network Device

3.12.1. Description

This device provides a virtual Ethernet network device. It is based on the Linux virtio-net interface.
For details of the Virtio interface see Chapter 4, “Virtio”.

Two Virtio queues are used. The first to receive incoming packets, and the second to transmit outgoing
packets.

This first 256 bytes of device address space is control registers, as with other devices. Offsets from
0x100 onwards provide access to the virtio-net config space, and accepts accesses of any size.

3.12.2. Sending Packets

Each request should be start with a 10 byte header. This header is not currently used, and should be
zeroed. The remainder of the request constitutes the packet data.

3.12.3. Receiving Packets

Requests in the receive queue should allocate space for a 10 byte header. When a packet arrives the
device will fill in the header, and copy the packet data to the remainder of the request. The header
is currently unused and should be ignored.

3.12.4. Device Properties

conpati bl e syborg,virtio-net

3.12.5. Registers

Table 3.11. Network Device Registers

Offset | Access|Reset Name Description

0x000 [R 0xc51d000a |ID Peripheral ID.

0x004 |R 0x00000001|DEVTYPE Virtio device ID.

0x008 |R impl def HOST_FEA-|For future expansion. Allows the device to expose a
TURES set of feature bits.

25

Base Platform Devices

Offset

Access

Reset

Name

Description

0x00c

RW

0x00000000

GUEST_FEA-
TURES

For future expansion. Allows the driver to acknow-
ledge support for a set of features.

0x010

RW

0x00000000

QUEUE_BASE

Set the address of the selected virtqueue. Should be
aligned on a 4k boundary.

0x014

impl def

QUEUE_NUM

The size of the selected virtqueue ring. Will be zero
for unimplemented queues.

0x018

RW

0x00000000

QUEUE_SEL

Select which virtqueue is accesses by the QUEUE
BASE and QUEUE_NUM registers. Writing a value
of 0 selects is the first queue and writing 1 selects
the second.

0x01c

N/A

QUEUE_NOTI-
FY

Notify the device that new requests have been placed
in a virtqueue. The value written determines which
queue is checked.

0x020

RW

0x00000000

STATUS

Set Virtio device status bits. This is used to inform
the device about the state of the OS driver. The
device will not begin servicing requests until the
device driver indicates that it is ready. A combination
of the following bitflags should be used:

1 The device has been detected.
2 A driver has been associated with the device.

4 The device driver has completed initialization
and it read for operation.

Writing zero to this register resets the device.

0x024

RW

0x00000000

INT_ENABLE

0 Interrupt masked.

1 Interrupt enabled.

0x028

RW

0x00000000

INT_STATUS

Write 0x00000001 to this register to clear the inter-
rupt. Reads will have the low bit set if the notification
interrupt is pending.

0x100

RW

impl def

config

The device config is accessible from this offset. The
first 6 bytes of the device config can be read to de-
termine the device MAC address.

3.13. NAND Flash Device

3.13.1. Description

This provides NAND flash based storage. The virtual device emulates a connection to a Samsung
NAND flash chips such as the K9F2808UOA.

A backing file for the contents of the flash device can be specified using the -drive
if=md,file=filenane.ing commandline option. The size of the file is used to determine
whether it includes the OOB data. e.g. for a 128Mbit device a 16Mbyte file is treated as 512 byte
blocks, with the additional 16 "spare" bytes per block being held in memory, and initially zeroed. A

26

Base Platform Devices

16.5Mbyte file is treated as a set of 528 byte blocks. If no backing file then all the data is help in
memory and discarded when the virtual machine terminates.

The device also contains an ECC engine to assist with software error detection and correction. This
maintains rolling parity bits based on the values read from and written to the DATA register.

Parity bits are calculated as follows:

P1" bit0 ” bit2 ~ bit4 ~ bit6 ~ bit8 ~ bit10 ~ bitl2 ~ bitl4 ...
P1 bitl A bit3 ~ bit5 ~ bit7 ~ bit9 ~ bit1l ~ bitl3 ~ bitl5 ...
P2' bit0 ~ bitl ~ bit4 ~ bit5 ~ bit8 ~ bit9 » bitl2 ~ bitl3 ...
P2 bit2 ~ bit3 ~ bit6 ~ bit7 ~ bit10 ~ bit1l ~ bitl4 ~ bit15 ...
P4" Dbit0 ~ bitl ~ bit2 ~ bit3 ~ bit8 ~ bit9 » bit10 ~ bitll ...
P4 bit4 ~ bit5 ~ bit6 ~ bit7 ~ bit12 ~ bit13 # bitl4 ~ bitl5 ...
etc.

The following devices are supported:

Size (Mbit) |Chip I D|Page Size (bytes) |Erase Size (pages)
1 Ox6e 256 16
2 0x64 256 16
4 0x6b 512 16
8 0xd6 512 16
16 0x33 512 32
32 0x35 512 32
64 0x36 512 32
128 0x78 512 32
256 0x71 512 32
512 0xa2 2048 64
1024 Oxal 2048 64
2048 Oxaa 2048 64
4096 Oxac 2048 64
8192 0xa3 2048 64
16384 0xa5 2048 64

All devices are 8 bits wide.
3.13.2. Device Properties

conpati bl e syborg, nand

size The size of the flash device in Mbits.

27

Base Platform Devices

3.13.3. Registers

Table 3.12. NAND Flash Device Registers

Offset | Access|Reset Name Description
0x000 |R 0xc51d000b (ID Peripheral ID.
0x004 |RW [impl def DATA The low 8 bits of this register map onto the 8 Data
Input/Output pins on the flash chip. The high 24 bits
are ignored.
0x008 |RW [0x00000000|CTL Read or write flash chip control pins. Bit mapping as
as follows:
BitO Command Latch Enable.
Bitl Address Latch Enable.
Bit2 Chip enable (active low).
Bit3 Write Protect (active low).
Bit4 Read(1)/Busy(0) Output. Writes to this bit
are ignored.
0x00c |[RW |0x00000000 | ECC_COUNT |The number of bytes processed by the ECC engine.
Write zero to this register to reset the ECC engine.
0x010 |RW |0x00000000|ECC_CP ECC column parity. Bit mappings as follows:
Bit0 P1'
Bitl Pl
Bit2 P2
Bit3 P2
Bit4 P4’
Bits P4
Bits 6-31 are unused and read as zero.
0x014 |[RW |0x00000000|ECC_LP ECC line parity. Bit0O=P8', Bit1=P8, Bit2=P16',
Bit3=P16, etc.

3.14. Audio Device

3.14.1. Description

This device provides audio playback and recording. It is based on the Linux virtio-net interface. For
details of the Virtio interface see Chapter 4, “Virtio”.

Three Virtio queues are used. The first queue is a command queue, used to configure the device.
The remaining queues form two independent audio streams. Each stream can be configured for either
output (playback) or input (recording).

28

Base Platform Devices

Each stream queue transfers sample data to/from the associated stream. Sample data is organised in
frames, with each frame containing one sample for each channel.

This first 256 bytes of device address space is control registers, as with other devices. Offsets from
0x100 onwards provide access to the virtio-net config space, and accepts accesses of any size.

3.14.2. Configuration Commands

The device is configured by placing commands in the command queue. A command is 12 bytes long,
represented by the following structure:

struct virtio_audio_cnd

{
ui nt 32_t command,;
uint32_t stream
uint32 t arg;

b

Each command applied to a single stream. The meaning of the argument is dependent on the command.
Multiple commands may be submitted in a single request. Some commands write a result value,
others simply effect stream operation.

Table 3.13. Audio Device commands

Command |value|Description

Set Endian 1 Set the endianess of sample data.
arg=0 Little endian

arg=1 Bigendian

Set Channels |2 Set the number of channels.
1 Mono

2 Stereo

Set Format |3 Set the sample format.

0 Unsigned 8-integer
1 Signed 8-bit integer
2 Unsigned 16-integer
3 Signed 16-bit integer
4 Unsigned 32-integer

5 Signed 32-bit integer

Set Frequency |4 Set the number of frames per second.

29

Base Platform Devices

Command

value

Description

Init

Prepare a stream for operation. This should be done after setting the sample
format and frequency, and before setting the stream running.

0 Stream is receiving data (capture)
1 Stream is sending data (playback)

This command returns a 32-bit integer specifying the size in bytes of the
hardware buffer associated with this stream. This value may be zero if the
size is not known.

Run

Start for stop stream operation.
0 Stop stream

1 Start stream

3.14.3. Device Properties

conpati ble syborg,virtio-audio

3.14.4. Registers

Table 3.14. Audio Device Registers

Offset | Access|Reset Name Description
0x000 (R 0xc51d000a |ID Peripheral ID.
0x004 (R 0x0000ffff |DEVTYPE Virtio device ID.
0x008 (R impl def HOST_FEA-|For future expansion. Allows the device to expose a
TURES set of feature bits.
0x00c |[RW |0x00000000|GUEST_FEA-|For future expansion. Allows the driver to acknow-
TURES ledge support for a set of features.
0x010 |RW |0x00000000 |QUEUE_BASE |Set the address of the selected virtqueue. Should be
aligned on a 4k boundary.
0x014 |R impl def QUEUE_NUM | The size of the selected virtqueue ring. Will be zero
for unimplemented queues.
0x018 |RW |0x00000000 | QUEUE_SEL |Select which virtqueue is accesses by the QUEUE _
BASE and QUEUE_NUM registers. Writing a value
of 0 selects is the first queue and writing 1 selects
the second.
0x01c |W N/A QUEUE_NOTI-|Notify the device that new requests have been placed
FY in a virtqueue. The value written determines which
queue is checked.
0x020 |[RW |0x00000000 |STATUS Set Virtio device status bits. This is used to inform
the device about the state of the OS driver. The
device will not begin servicing requests until the
device driver indicates that it is ready. A combination
of the following bitflags should be used:

30

Base Platform Devices

Offset

Access

Reset

Name

Description

1 The device has been detected.
2 Adriver has been associated with the device.

4 The device driver has completed initialization
and it read for operation.

Writing zero to this register resets the device.

0x024

RW

0x00000000

INT_ENABLE

0 Interrupt masked.

1 Interrupt enabled.

0x028

RW

0x00000000

INT_STATUS

Write 0x00000001 to this register to clear the inter-
rupt. Reads will have the low bit set if the notification
interrupt is pending.

0x100

RW

impl def

config

The device config is accessible from this offset. The
first bytes the device config can be read to determine
the number of streams implemented by the device.

31

Chapter 4

Virtio

Several base platform devices are built on top of the Virtio framework for virtual 10 devices.
This chapter describes that framework.

32

Virtio

4.1. Introducing Virtio

The Virtio framework was developed to allow the Linux kernel to access virtual 10 devices provided
by a variety of hypervisors. It provides a common interface for interacting with a variety of different
1O devices.

The majority of communication with a device is done via virtqueues. A virtqueue is a queue of buffers
provided by the guest for consumption by he host. Each buffer may contain several readable or
writable parts, located by a scatter-gather array.

Authorative documentation for Virtio devices can be found in the Linux kernel sources and Russell,
R. 2008. virtio: towards a de-facto standard for virtual I/O devices. SIGOPS Oper. Syst. Rev. 42, 5
(Jul. 2008), 95-103. DOI= http://doi.acm.org/10.1145/1400097.1400108

4.2.Virtio_ring

SVP devices implement virtqueues using a simple ring buffer interface known as virtio_ring.

Each virtio_ring consists of 3 parts: An array of descriptors used to implement scatter-gather lists,
immediately followed by an avail ring used to submit requests to the device. The used ring allows
the device to report request completion, and is located starting on the next 4k page boundary after
the avail ring.

The descriptor array and avail ring are managed and written by the guest OS driver. The used ring
is written by the device and read by the OS driver.

The format of a descriptor is as follows:

struct vring_desc
{
uint64_t addr;
uint32_t |en;
uint16_t fl ags;
uint16_t next;

b

The addr and | en fields identify and area of memory. The next field is used to chain multiple
descriptors into a single request. The flags field is a combination of the following flags:

0x0001 (Next) If set then the next field contains the index of the next descriptor for this
request. If clear then this is the last descriptor in the request.

0x0002 (Write) If set then this section is to be written by the device. If clear then this section
is to be read by the device.

The format of the avail ring is as follows:

struct vring_avail

{
uint16 t fl ags;
uint16 t idx;
uint16_t ring[NUM ;

b

33

Virtio

The i dx field is a free running index identifying the head of the submission queue. It indexes (with
wrapping) into a ring of descriptor indexes. This separation of request submission and descriptor
management allows the virtqueue to operate in an asynchronous manner, and prevents long running
requests from blocking short requests.

A notification will be generated when the device reads a request from the avail ring. Setting the low
bit of the f | ags field will suppress these notifications.

The format of the used ring is as follows:

struct vring used

{
uint16_t fl ags;
uint16 _t idx;
struct {
uintl16 t id;
uintl6 t len;
} ring[NUM ;
1

The used ring works much the same way as the the avail ring. When a request completes the index
of the first descriptor and the number of bytes is written into the next used ring entry, and the i dx
field is incremented. The number of bytes processed may be less than the total submitted. e.g. a
network device may write one packet per request, even if a single request is large enough to hold
multiple packets.

A notification is generated when the device reads a request from the avail ring. Setting the low bit
of the f | ags field suppresses this notifications.

To submit a new request the OS driver should first construct a descriptor chain for the request. Then
it should write the index of the first descriptor into the next slot in the avail ring. Once this has been
completed the i dx field in the avail ring should be incremented. Finally the device should be notified
that new requests are available. Multiple requests may be added before performing the notification.

When the request completes the device will write write it to the next entry in the used ring, then in-
crement the i dx field.

Descriptors must not be reused until this has occurred. Some devices may process and complete re-
quests out of order. Provided there are unused descriptors available, Additional requests may be
submitted to the avail ring even if previous requests have not completed. Requests can not be cancelled
or removed once they have been submitted to the device.

A notification is generated when a request completes and is added to the used ring. Setting the low
bit of the f | ags field suppresses this notifications.

4.3.Virtual Platform Bindings

The base Symbian Virtual Platform does not implement a PCI bus, so the normal Linux device
binding cannot be used. Instead a very similar interface is implemented via a set of memory mapped
registers.

These registers are described in the individual device descriptions.

34

Chapter 5
Device Plugins

The Symbian Virtual Platform provides a device plugin mechanism. This allows third party
devices (including emulation of real hardware devices) to be added to the virtual machine.

35

Device Plugins

5.1. Introduction

The Symbian Virtual Platform includes a plugin mechanism that allows emulation of additional
devices.

Device plugins are loaded as Python modules. These can be implemented directly in Python, or as
a Python wrapper around some other language (typically C/C++).

Device modules can access to QEMU functionality by importing the genu module.

5.2. Device Classes

A device class corresponds to a particular type of device. Device classes are implemented as a Python
class derived from gemu.devclass. This class type is then used to instantiate individual devices.

A device class should be derived from germu. devcl ass. New device classes can be registered by
calling gemu. r egi st er _devi ce(newcl ass) .

The class should define the following attributes:
irqgs The number of IRQ outputs used by the device.

regi ons Alistofgenu. i or egi on objects describing memory mapped 10 regions provided
by the device. Each entry in the list corresponds to an entry in the r eg machine
description property.

Each genu. i or egi on object has the following attributes:
si ze The size of the region, in bytes. This should be a power of two.

r eadl This function will be called when a read operation occurs. This should
be a method of the containing class. The method will be called with the
offset from the start of the region, and should return the value read.

writel Thisfunction will be called when a write operation occurs. This should
be a method of the containing class. The method will be called with the
offset from the start of the region and the value to be written.

nanme The name of the device. This is matched against the conpat i bl e machine de-
scription property.

properties A dictionary of {nane:val ue} pairs. Each name is matched against properties
in the machine description. The value specifies the default value for the property,
and the property type (string or integer) is inferred from the default value. When
a device is instantiated the pr operti es attribute of the device object will be
populated with values from the machine description. If the machine description
does not specify a property then the default will be used.

The char dev property is special. If present this should be given a default value
of None. This will be replaced with a gemu. char dev object when the device is
instantiated.

Device classes should override the following methods:

36

Device Plugins

create(self) Initialize the device. The pr oper t i es attribute is populated with values
from the machine description before this method is called.

Any attributes or data required by the device should be added in this
function.

save(sel f, state) Save device state.
| oad(sel f, state) Restore device state from state.
Warning

The __init__ method should not be overridden.

5.3. Device Object Methods

Device objects provide the following methods to assist with implementing device emulation:

set _irq_level (irqg, level) Riseorloweradevice IRQ output.i r q isa zero based index
specifying which IRQ to modify. | evel is zero to lower the
IRQ or one to raise it.

Create_ Create input IRQ lines (for interrupt controller type devices).
i nterrupts(call back, When the IRQ line state changes the function
count) cal | back(irq, |evel) will be called.

dma_r eadb(addr ess) Read a byte from system memory.
dma_writeb(address, Write a byte to system memory.

val ue)

5.4. Snapshots

In order to support snapshots, devices must be able to save and restore internal state. The is achieved
by overriding the save and | oad methods. The snapshot state can be accessed via the object passed
to these methods. This state object provides the following methods:

get _u32() Read an unsigned 32-bit integer.
get _ub4() Read an unsigned 64-bit integer.
get _s64() Read a signed 64-bit integer.

put _u32() Write an unsigned 32-bit integer.
put _u64() Write an unsigned 64-bit integer.

put _s64() Write a signed 64-bit integer.

5.5.Timers

The genu. pti mer class provides countdown timer functionality. When the timer reaches zero a
function is called. In one-shot mode the timer is then disabled. In periodic mode the counter is reloaded
and immediately resumes counting down.

37

Device Plugins

Functions are also provided to query the current virtual clock.

genu. get _cl ock() Return the current value of the high resolution virtual clock.
This is the number of nanoseconds since the machine was
created.

genmu. start _time() Return the time when the machine was created. This is the

number of seconds since the Unix Epoch (00:00:00 UTC,
January 1, 1970).

gemu. ptimer(tick, freq) Create a new timer counting at the specified frequency (Hz).
The function t i ck() will be called when the timer expires.

pti mer. count The current counter value.
ptimer.run(oneshot) Start the timer in either one-shot (True) or periodic (False)
mode.
Note

This does not reset the counter value. In one-shot
mode the counter must be explicitly reloaded after
it reaches zero.

ptimer.stop() Stop the timer.
ptimer.set limt(limt, Set the reload value when in periodic mode. This has no effect
r el oad) in one-shot mode. If r el oad is True then also set the counter

valuetolimt.
ptimer. get(state) Restore state from snapshot.

ptimer. put (state) Save state to snapshot.

5.6. Keyboard

The genu. r egi st er _keyboar d(handl er) function allows a device to respond to keyboard
input. When a keyboard event occurs handl er (keycode) is called. The keycode is a standard
PC scancode. Extended scanodes are prefixed by an 0xe0 byte, and bit 7 (0x80) of the scancode in-
dicates whether this is a press (clear) or release (set) event.

5.7. Mouse

The gemnu. r egi st er _nouse(handl er, absol ute) function allows a device to respond
to mouse input. When a mouse event occurs handl er (x, y, 2z, buttons) is called. The
absol ut e argument should be True for touchscreen type devices, and False for mouse type devices.

The x and y values specify the horizontal and vertical cursor position. In absolute mode these are
coordinates between 0 (top/left) and 32767 (bottom/right). In relative mode they are distance from
the previous position.

The z value specifies the movement of the scroll wheel.

Bits 0,1 and 2 of the but t ons value specify the state of the left, right and middle mouse buttons
respectively. A set bit indicates that the button is pressed.

38

Device Plugins

5.8. Interfacing with C code

Device plugins may be implemented in any language (e.g. C/C++). However in order to do this a
Python interface to this code must be created. The simplest way to do this is to use SWIG (ht-
tp://www.swig.org/) to generate the interface.

SWIG uses an interface file to generate the Python interface code. In simple cases this interface file
is very similar to the C header file used to declare the functions.

This is best demonstrated by a simple example. Consider the following C code (nmyf oo. c):

int nyfoo(int a, int b)
{

return a * b;

}

The SWIG interface file (f 0o. i) for this is as follows:

%rodul e foo

A

int nyfoo(int a, int b);
%

int nyfoo(int a, int b);

The interface file consists of two parts. The section inside % /% is used to generate the interface
code, and the second declaration is used to provide C prototypes and inline code for use by this in-
terface code. #i ncl ude directives can be used to avoid this duplication.

The following command generates the Python interface code for this module:
Swi g -python foo.i

This command creates two files, f 00. py and f oo_wr ap. c.f 00. py provides the Python part of
the module. f oo_wr ap. ¢ should be linked with your C code to provide the actual implementation
module as follows:

gcc -shared -o _foo.pyd foo wap.c nyfoo.c \
-1 gemu-installdir\include germu-installdir\lib\python26.dlI

The files f 0o. py and _f 00. pyd should then be copied to shar e\ genu\ pl ugi ns so that they
can be found by other plugins.

To use this module from a Python plugin it should first be imported with i nport f o0o. It can then
be used the same as any other Python module, for example pri nt f oo. nyfoo(2, 3) will print
6.

For more details about using SWIG, including more complicated examples and how to call Python
routines from C, see see http://www.swig.org/Docl.1/HTML/Python.html.

39

http://www.swig.org/
http://www.swig.org/
http://www.swig.org/Doc1.1/HTML/Python.html

	Symbian ADT Sourcery G++ Lite
	Table of Contents
	Preface
	1. Intended Audience
	2. Organisation
	3. Typographical Conventions

	Chapter 1 Configuring the Virtual Platform
	1.1. About Flattened Device Trees
	1.2. Board Configuration Files
	1.2.1. Invoking QEMU
	1.2.2. Compiling Device Trees

	1.3. Structure of Board Configuration Trees
	1.3.1. CPU Device Nodes
	1.3.2. Memory Device Nodes
	1.3.3. Peripheral Device Nodes
	1.3.4. Interrupts

	1.4. Example

	Chapter 2 GUI Configuration
	2.1. GUI Structure and Components
	2.2. Using the GUI
	2.3. GUI XML File Specification
	2.3.1. Virtual Terminals
	2.3.2. Buttons
	2.3.3. Display Areas
	2.3.4. Pointer Areas

	2.4. Sample XML File

	Chapter 3 Base Platform Devices
	3.1. Common Device Characteristics
	3.2. Platform Device
	3.2.1. Description
	3.2.2. Device Properties
	3.2.3. Registers

	3.3. Interrupt Controller
	3.3.1. Description
	3.3.2. Device Properties
	3.3.3. Registers

	3.4. Serial Port
	3.4.1. Description
	3.4.2. Device Properties
	3.4.3. Registers

	3.5. Keyboard Controller
	3.5.1. Description
	3.5.2. Device Properties
	3.5.3. Registers

	3.6. Interval Timer
	3.6.1. Description
	3.6.2. Device Properties
	3.6.3. Registers

	3.7. Real-Time Clock
	3.7.1. Description
	3.7.2. Device Properties
	3.7.3. Registers

	3.8. Pointer Controller
	3.8.1. Description
	3.8.2. Device Properties
	3.8.3. Registers

	3.9. Framebuffer
	3.9.1. Description
	3.9.2. Configuring the Framebuffer device
	3.9.3. Pixel Formats
	3.9.4. Device Properties
	3.9.5. Registers

	3.10. Host Filesystem Device
	3.10.1. Description
	3.10.2. Syscalls
	3.10.3. Errors
	3.10.4. Device Properties
	3.10.5. Registers

	3.11. Snapshot Device
	3.11.1. Description
	3.11.2. Device Properties
	3.11.3. Registers

	3.12. Network Device
	3.12.1. Description
	3.12.2. Sending Packets
	3.12.3. Receiving Packets
	3.12.4. Device Properties
	3.12.5. Registers

	3.13. NAND Flash Device
	3.13.1. Description
	3.13.2. Device Properties
	3.13.3. Registers

	3.14. Audio Device
	3.14.1. Description
	3.14.2. Configuration Commands
	3.14.3. Device Properties
	3.14.4. Registers

	Chapter 4 Virtio
	4.1. Introducing Virtio
	4.2. Virtio_ring
	4.3. Virtual Platform Bindings

	Chapter 5 Device Plugins
	5.1. Introduction
	5.2. Device Classes
	5.3. Device Object Methods
	5.4. Snapshots
	5.5. Timers
	5.6. Keyboard
	5.7. Mouse
	5.8. Interfacing with C code

